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Transverse effects and noise in optical instabilities
By L. A. Luciarto!, R. J. Horowicz!f, G. STrINI AND L. M. NarDUCCT?

1 Dipartimento di Fisica dell’ Universita, Via Celoria 16, 20133 Milano, Italy
2 Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, U.S. 4.

We analyse the simplest model that describes the dynamics of a two-level, optically
bistable system in a ring cavity, and incorporates a Gaussian radial variation of the
electric field. We find that the most favourable situation to achieve self-pulsing
instabilities is that of atomic and cavity detunings with opposite sign. The results are
compared with those of plane-wave theory. We show that noise plays a primary role
at the onset of self-oscillatory instabilities, and that its effects are governed by an
equation formally identical to the Risken equation for the laser.
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1. INTRODUCTION

The detailed comparison between theory and experiment in the study of quantum optical
systems imposes a thorough analysis of the effects that arise from the radial variation of the
electric field in the radiation beam (transverse effects). This is especially true in the case of
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optical bistability (0.b.), in which the modelling of practical devices requires precise predictions
on the behaviour of the system.

From the viewpoint of theory, this implies a renunciation of the comfortable ground of
plane-wave theory and coping with the difficulties of two-dimensional theories. From the
experimental viewpoint it is necessary to perform detailed and systematic observations of the
behaviour of the radial profile, an aspect that is most often disregarded. This is necessary to
allow a comparison with theoretical predictions, and to help theory in attaining an adequate
description of the physical situation.

In recent years, considerable efforts have been devoted to the study of transverse effects (see,
for example, Bowden et al. (eds) (1984). A few of these works analyse the transverse effects
on instabilities and spontaneous pulsations in 0.b. (Moloney et al. 1982 ; Firth & Wright 1982;
Lugiato & Milani 1983) or in the laser (Hauck et al. 1983). These results suggest that the
instability problem including transverse effects is not simply an extension or a generalization

p
[\ \

p—
< S of the plane-wave case, but rather an independent piece of physics. In fact, there are examples
= of plane-wave instabilities that disappear in the Gaussian case (Lugiato & Milani 1983), as
O H p pPp g

2 well as of instabilities predicted by a full two-dimensional treatment, that are absent in
ez p y
@) plane-wave theory (Hauck et al. 1983).
T In this paper we study the transverse effects on a class of instabilities in mixed absorptive
- pap y P

W

and dispersive o.b., previously analysed in the framework of plane-wave theory by Lugiato
etal. (1982) and Lugiato & Narducci (1984); see also Ikeda & Akimoto (1982). Our treatment
is based on the simplest possible model that describes the dynamics of this system and
incorporates a radial variation of the electric field. This model, which allows for an analytical

t Permanent address: Departamento de Fisica, Pontificia Universidade Catélica do Rio de Janeiro,
Rio de Janeiro, Brazil.
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292 L. A. LUGIATO AND OTHERS

study of the stability of the steady-state solutions, is described in §2, in which the stationary
solutions are also calculated. The results of the linear stability analysis are illustrated, and
compared with those of plane-wave theory, in §3.

Another general class of effects that must be carefully studied for practical purposes are those
that arise from noise. Fluctuation phenomena in o.b. have been extensively analysed from a
theoretical viewpoint, but almost exclusively in the stationary state (Lugiato 1984). We recently
studied some noise effects in the transient or in the stable self-pulsing behaviour, in the critical
situations in which these effects are most visible. Another paper in this symposium, (by Broggi
& Lugiato), illustrates the role of fluctuations in the critical slowing down, and shows that they
give rise to a broad switching-time distribution, as well as an interesting effect of transient
noise-induced optical bistability. On the other hand, in §4 of this paper we discuss the effects
of noise in the onset of self-pulsing instabilities. The concluding discussion is given in §5.

2. GAUSSIAN ONE-MODE MODEL FOR OPTICAL BISTABILITY

We consider a unidirectional ring cavity with spherical mirrors, of total length .#. It contains
a cylindrical, homogeneously broadened two-level atomic sample of length L and radius 4. We
assume that the Fresnel number, w2/AL, where w, is the beam waist and A the wavelength,
is so large that the beam radius is practically constant along the atomic sample. The incident
field is assumed to be matched to the fundamental TEM,, mode of the cavity.

If we indicate by 7 the radial variable normalized to the beam waist, the one-mode model
that we study is given by the dynamical equations (Lugiato & Milani 1983)

d d/w,

F A0 = —f(1+i0)+y—2cf didiexp (—7) P(7, 1), (1a)
YIS Pl t) = DG 0J1) exp ()~ (1+1d) P(5, 1), (19)
yu—l—aa—tD(f,t) = —{P(7,8) f*(t) + P*(7,¢) f(t) exp (— ) — D(7, £) + 1, (1c)

where fand y are the normalized amplitudes of the output and incident field, respectively; P(7, t)
and D(7,t) are normalized quantities that correspond to the macroscopic atomic polarization
and population difference at a distance r from the longitudinal axis. The field damping constant,
k, is defined as ¢ T/.#, where T is the mirror transmissivity coefficient. The atomic decay rates,
¥, and 7y, are the inverse of the relaxation times 7, and T, respectively. The bistability

parameter, C, is usually defined as
C=al/2T, (2)

where a is the unsaturated field absorption coefficient. The cavity and atomic detunings 6 and
4 are given by

0= (wc—wo)/ka 4= (wa_wo)/y.].a (3)
where w,, ©, and o, are respectively the frequency of the incident field, the frequency of the
cavity mode and the atomic transition frequency. The model (1) incorporates the following
assumptions: (i) the mean field limit L < 1, T' < 1, with C = aL/2T arbitrary; (ii) the time
evolution occurs on a timescale much longer than the cavity transit time; and (iii) the transverse
profile of the electric field inside the filled cavity corresponds to the Gaussian TEM,, mode.
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This one-transverse-mode assumption holds in at least two situations: (1) when all the other
modes are detuned enough from the input frequency, w,, and (2) when the losses of all the
other transverse modes are large enough to maintain their amplitude negligible.

At steady state, one obtains from (1) the equation that links the input and output fields:

¥ = R2[{1 +2Cg ()} +{0— 2CAg(x)}], )
where we define
X = |fst|
1 1+ 4%+ x*
2\ —
and 8(x%) x2ln1+A2+xzexp{-2(d/wo)2}. ®)

This state equation was derived by Ballagh et al. (1981), Arimondo et al. (1981), Drummond
(1981) and Lugiato & Milani (1983). In the limit d/w,~> 0 one recovers the plane-wave theory
(Lugiato & Milani 1983). In the following, we shall always consider the opposite case d/w,~> 0.

3. LINEAR STABILITY ANALYSIS

The details of the stability analysis of the steady-state solutions can be found in Lugiato
et al. 19845). Here we limit ourselves to the discussion of the results.

First, let us recall the picture in the plane-wave theory (Lugiato ef al. 1982). For suitable
choices of the parameters C, 4, 0, k = k/y, and J = 71/71 one finds that a portion of the
steady-state curve with positive slope is unstable. A necessary condition is that 4 or 6 or both
are non-zero. With the possible exception of a small range of values of the incident field in
correspondence with which the long-term behaviour exhibits precipitation to the lower
transmission state, this instability leads to undamped self-pulsing behaviour, with an oscillation
period on the order of the cavity build-up time, £~'. When C is very large, the instability range
includes a domain of chaotic behaviour. On approaching this domain on either side, one
identifies a cascade of period-doubling bifurcations of the usual type.
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Ficure 1. Positive-slope instability domain in the 4-6 plane, in the plane-wave case. C = 75, k=0.5,7 = 2. Filled
circles indicate that the steady-state curve is S-shaped and that no positive-slope instability is there. Filled
squares indicate that there is neither bistability nor instability. Open circles indicate that the steady-state curve
is S-shaped and that there is a positive slope instability range, the approximate extension of which in the variable
x is shown in the circle. Open squares indicate that there is no bistability, but the steady-state curve includes
an instability range, the approximate extent of which is indicated in the square.
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We analysed the stability of the steady-state curve for C = 75, k£ = 0.5, =2, —10< 4,
6 < 10. Figure 1 shows the extension of the positive-slope instability region in the second
quadrant of the 4—@ plane in the plane-wave case. No instability was found in the first quadrant,
provided that 4 was not too small. A simultaneous change of sign in 4 and 6 does not change
anything with respect to the stability of the stationary states. If we increase the value of k by
keeping fixed the other parameters C, 4, 6 and 9, the unstable range in the steady-state curve
of transmitted against incident field grows.
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cavity detuning, 6

Ficure 2. As for figure 1, but in the Gaussian case with d/w, = 0.

Let us now turn to the Gaussian case. Figure 2 exhibits the extension of the positive slope
instability region for the same values of the parameters considered in figure 1. Again, we do
not find any positive slope instability in the first quadrant of the 4—6 plane and in the domain
5<4<10, —10 < 6 < 10. Hence for C < 100 the situation 46 < 0, which is less favourable
for bistability than the case 46 > 0, is on the contrary necessary to obtain a self-pulsing
instability. The position of the instability domain in the A-6 plane is substantially the same
as in the plane-wave case; however, we do not find any positive slope instability in the purely
absorptive situation 4 = 0. Figure 2 indicates also that in the Gaussian case the situation of
S-shaped steady-state curve is less favourable to instabilities than that of a single-valued curve.
On comparing the data in figures 1 and 2 for the same values of 4 and 6, we see that, for 4
not too small, the positive-slope instability range in the variable x turns out to be larger in the
Gaussian case. As we see from figures 3 and 4, this feature is mainly due to the fact that in
the plane-wave case a sizable part of the instability range has negative slope. On the other hand,
the situation of the single-valued steady-state curve is ideal for pulsation, because we are sure
a priort that in the whole instability range the system exhibits undamped self-pulsing. In fact,
in this case no competitive process of long-term precipitation to the lower transmission branch
is possible.

An interesting quantity is the ratio (instability range)/(instability threshold), where both
the instability range and the instability threshold refer to the input field variable y. When the
steady-state curve is S-shaped, the instability threshold is the minimum value of y for which
the higher transmission steady state is unstable. In figures 3 and 4 the values of this ratio are
practically identical and equal to 0.23.
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Ficure 3. Plane-wave case, C = 75,4 = 1,0 = —9,k = 0.5, ¥ = 2. The steady-state curve of normalized transmitted

field, x, is shown as a function of normalized incident field, y, and the part of the curve that is unstable against
fluctuations is indicated.

FIGURE 4. As for figure 3, but in the Gaussian case with d/w, = 0.

We are currently analysing the numerical solutions of the full nonlinear time-dependent
dynamical equations (1), to see what kind of oscillations arise from this instability in the
Gaussian case.

4. NOISE EFFECTS IN THE ONSET OF SELF-PULSING INSTABILITIES

The instability discussed in the previous section arises in the cavity mode nearest to resonance
with the incident field (resonant mode), which is the only mode that is taken into account in
(1). On the other hand, the first instability that was discovered in the Maxwell-Bloch equations
for o.b. arises in the off-resonance longitudinal cavity modes, adjacent to the resonant mode
(Bonifacio & Lugiato 1978; Lugiato 1980). Hence in this case the instability must be described
by a many-mode theory and leads to spontaneous oscillations with a period on the order of
the cavity round-trip time. The slowly varying envelope of the electric field does not oscillate
uniformly in the cavity, as in the pulsations arising from the instability described in the previous
section, but exhibits a wave profile that propagates and circulates along the cavity.

In Lugiato & Milani (1983) it is shown that in the purely absorptive case this off-resonance
mode instability disappears when the electric field has a Gaussian transverse profile. On the
other hand, a recent paper (Carmichael et al. 1984) demonstrates that in the general mixed
absorptive and dispersive case the instability remains, and sometimes is even enhanced with
respect to the plane-wave situation.

We analyse the effects of thermal, external and quantum noise on the onset of the off-resonance
mode instability in o.b. (Lugiato et al. 1984a). For the sake of simplicity, we consider the
plane-wave, purely absorptive case. Use of the dressed-mode formalism of o.b. (Benza &
Lugiato 1981) turns out to be essential. In Benza & Lugiato (1981) the analysis of noise effects
was restricted to the region below threshold, where a simple linearized treatment is possible.
Thus, the critical slowing down and the spectral line narrowing effects in the approach to the
instability threshold were described. Here we extend this analysis by including the nonlinear
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terms that become essential in the threshold region. This makes it possible to achieve a full
description of fluctuations at the onset of instability.

It was repeatedly claimed (see, for example, Gronchi ef al. 1981) that the behaviour of the
adjacent cavity modes at the instability threshold is completely analogous to that of the laser
field at laser threshold. In fact, these modes become unstable when the side-mode gain becomes
larger than the loss. Furthermore, at instability threshold the adjacent modes spring up from
zero under the triggering of fluctuations, with a random phase. Our present analysis
substantiates this picture decisively. In fact, let us call £, and #_, the complex amplitudes of
the two side-modes. Let P(f,, 8, t) and P(f_,, f*,,t) be the Glauber-Sudarshan P-functions
that describe the fluctuations of the side-mode fields, respectively. In the threshold region, we
obtain the following equation for P(f4,, f¥,1):

0 0 02

_aﬂl (A Br—aBi| Brl?) — 7o (AS BY —a*BY1 B117) +DW

d * —
&P(ﬂla lat)'—{ aﬂik

}P(ﬂuﬂi",t),
(6)

where A, is the eigenvalue of side-mode 1; hence ReA; is negative (positive) below (above)
instability threshold. The real part of a and the diffusion coefficient, D, are positive. The
imaginary parts of A and a shift the side-mode frequency with respect to its empty-cavity value.
The function P(B_,, f*,,¢) obeys a completely similar equation.

The relevant point is that (6) is formally identical to the well known Risken equation (Risken
1966), which describes the statistics of the laser field in the threshold region. This means that
we can immediately exploit all the results obtained for the Risken equation, to describe
fluctuations at the onset of self-pulsing behaviour. Most importantly, we can conclude that these
fluctuations are as remarkable as laser fluctuations at threshold. More precisely, let us
distinguish the static and the dynamical aspects.

First, let us consider the asymptotic, long time self-pulsing régime. If we do not observe the
whole electric field, but only a sideband in the instability threshold region we find large
fluctuations, as we would expect in a critical situation. For instance, it would be interesting
to measure the photon statistics, exactly as was done many years ago for the laser. Furthermore,
from our knowledge of the laser case we infer that the sideband spectral line not only exhibits
narrowing on approaching the instability threshold, but goes on narrowing beyond threshold.

Next, let us consider the approach to the asymptotic, stationary self-pulsing régime. This
approach will present anomalous fluctuations, typical of the decay of the unstable state. These
fluctuations can in part counteract the critical slowing down that arises at the instability
threshold. This effect is similar to that described by Broggi & Lugiato (this symposium).

5. CONCLUDING REMARKS

The matter of instabilities and oscillatory behaviour, both periodic and chaotic, in nonlinear
systems is more and more attracting the interest of the scientific community. In the special case
of optical bistability, this interest also presents practical aspects that arise from the perspective
of realizing all-optical clocks, which can be used for example to drive optical transistors.

We think that both types of instabilities discussed in this paper, namely the resonant-mode
and the off-resonance mode instabilities, are good candidates for the construction of an optical
clock. They arise in mixed absorptive and dispersive o.b. We have demonstrated that they
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persist in the presence of a Gaussian transverse profile, and that they arise for values of the
parameters that we consider accessible. The pulsation period is different in the two cases: on
the order of the cavity build-up time % /¢T in the resonant mode instability, and on the order
of the cavity transit time % /¢ in the multimode instability.

We have also shown that the appearance of self-oscillations is accompanied by remarkable
critical fluctuations. This on the one hand shows the relevance of fluctuations in the dynamical
behaviour of the system, and on the other hand suggests new experimental observations of a
statistical type on optical systems.

This work has been carried out in the framework of the European Joint Optical Bistability
Project (E.J.O.B.) of the Commission of the European Communities.

Work supported by N.A.T.O. Research Grant no. 866/83 and by C.N.R. grant no.
CT 83.00029.02.115.14905. R.J.H. is grateful for a grant of the I.C.P.T. Programme for
Training and Research in Italian Laboratories.
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